Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Selvi Karaca, ${ }^{\text {a }}$ Mehmet Akkurt, ${ }^{\text {a* }}$ Ülkü Yılmaz, ${ }^{\text {b }}$ Hasan Küçükbay ${ }^{\text {b }}$ and Orhan Büyükgüngörr ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Physics, Faculty of Arts and Sciences, Erciyes University, 38039 Kayseri, Turkey, ${ }^{\text {b }}$ Department of Chemistry, Faculty of Arts and Sciences, Ínönü University, 44280 Malatya, Turkey, and ${ }^{\text {c }}$ Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, 55139 Samsun, Turkey

Correspondence e-mail: akkurt@erciyes.edu.tr

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.031$
$w R$ factor $=0.078$
Data-to-parameter ratio $=17.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1-Benzyl-3-[2-(1-piperidinio)ethyl]benzimidazolium dichloride monohydrate

The title compound, $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{3}^{2+} \cdot 2 \mathrm{Cl}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$, was synthesized from 1-benzylbenzimidazole and 2-chloroethylpiperidine hydrochloride in dimethylformamide. In the cation, the benzimidazole ring is connected to the piperidine ring by an ethylene group. The crystal structure is stabilized by $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{Cl}, \mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogenbonding interactions.

Comment

Heterocyclic compounds generally exhibit versatile pharmacological activities, such as antitumour, diuretic, fungicidal, bactericidal, antihelmintic, antiallergic, vasodilator, antihistaminic and local analgesic. We have reported the synthesis and antimicrobial activities of many benzimidazole derivatives (Küçükbay et al., 2003, 2004) and elucidated the crystal structures of some benzimidazole derivatives having piperidine or morpholine groups (Türktekin et al., 2004; Akkurt, Türktekin et al., 2004; Akkurt, Öztürk et al., 2004; Akkurt et al., 2005). We now report the synthesis and crystal structure of a biologically interesting piperidine-substituted benzimidazole compound, (I).

(I)

The molecular structure of (I) is illustrated in Fig. 1, and selected bond distances and angles are given in Table 1. All the geometric parameters of (I) agree with the results obtained in our previous studies of related heterocycles (Akkurt et al., 2005; Türktekin et al., 2004). The benzimidazole ring is essentially planar, with maximum deviations of 0.012 (1) \AA for atom N1 and -0.012 (1) \AA for atom C6. The dihedral angle between the planes of the phenyl and benzimidazole ring systems is $72.83(6)^{\circ}$. The piperidine ring has a chair conformation [the puckering parameters (Cremer \& Pople, 1975) are $Q_{\mathrm{T}}=0.5701(18) \AA, \theta=177.12(18)^{\circ}$ and $\left.\varphi=195(4)^{\circ}\right]$.

The crystal structure of (I) is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}, \mathrm{N}-$ $\mathrm{H} \cdots \mathrm{Cl}, \mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen-bonding interactions. Details are given in Table 2 and the hydrogen-bonding involving the Cl 1 anion and the water molecule of crystallization, O1, is illustrated in Fig. 2.

Received 8 June 2005 Accepted 9 June 2005 Online 17 June 2005

An ORTEP-3 (Farrugia, 1997) view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Experimental

Compound (I) was synthesized by heating, on a water bath for 3 h , a mixture of 1-benzylbenzimidazole ($2.00 \mathrm{~g}, 9.6 \mathrm{mmol}$) and 2-chloroethylpiperidine hydrochloride $(1.8 \mathrm{~g}, 9.6 \mathrm{mmol})$ in dimethylformamide (10 ml). The volatiles were then removed under vacuum and the crude solid obtained was crystallized from an $\mathrm{EtOH} / \mathrm{Et}_{2} \mathrm{O}$ (3:1) mixture. Colourless plate-like crystals were obtained (yield 3 g , 79%; m.p. $469-470 \mathrm{~K}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}\right): 81.4-1.8(q$, piperidine, 6 H$)$, 3.2 (q, piperidine, 4 H), 3.6 ($t, \mathrm{CH}_{2} \mathrm{CH}_{2}$-piperidine, 2 H), 4.8 (t, $\mathrm{CH}_{2} \mathrm{CH}_{2}$-piperidine, 2 H), 4.01 (t, ring methylene, 4 H), 4.13 (q, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}, 2 \mathrm{H}\right), 4.56\left(q,-\mathrm{CH}_{2} \mathrm{CH}_{3}, 2 \mathrm{H}\right), 5.5\left(s, \mathrm{CH}_{2}-\mathrm{Ph}, 2 \mathrm{H}\right), 7.3(s$, $\mathrm{Ar}-\mathrm{H}, 4 \mathrm{H}), 9.3$ (s, benzimidazole-C2-H, 1 H). Analysis calculated for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}$: C 61.46, H 7.07, $\mathrm{N} 10.24 \%$; found: C 63.02, H 6.71, N 10.70\%.

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{~N}_{3}^{2+} \cdot 2 \mathrm{Cl}^{-} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=410.37$
Monoclinic, $P 2_{1} / n$
$a=17.1422$ (12) \AA
$b=6.9643$ (3) A
$c=18.2627$ (13) \AA
$\beta=106.961$ (5) ${ }^{\circ}$
$V=2085.4$ (2) \AA^{3}
$Z=4$

Data collection

Stoe IPDS-II diffractometer ω scans
Absorption correction: integration (X-RED32; Stoe \& Cie, 2002) $T_{\text {min }}=0.784, T_{\text {max }}=0.943$
17638 measured reflections
4535 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.078$
$S=1.04$
4535 reflections
260 parameters
H atoms treated by a mixture of independent and constrained refinement
$D_{x}=1.307 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 17638 reflections
$\theta=1.9-27.2^{\circ}$
$\mu=0.33 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
Plate, colourless
$0.78 \times 0.49 \times 0.18 \mathrm{~mm}$

3875 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.032$
$\theta_{\text {max }}=27.0^{\circ}$
$h=-21 \rightarrow 21$
$k=-8 \rightarrow 8$
$l=-23 \rightarrow 22$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0383 P)^{2}\right. \\
\quad+0.7441 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.43 \mathrm{e}^{-3} \AA^{-3} \\
\Delta \rho_{\min }=-0.18 \mathrm{e}^{-3}
\end{gathered}
$$

Figure 2
The crystal packing of (I), viewed along the b axis. Dashed lines indicate $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen-bonding contacts (details are give in Table 2).

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

N1-C1	$1.3947(16)$	$\mathrm{N} 2-\mathrm{C} 15$	$1.4637(16)$
$\mathrm{N} 1-\mathrm{C} 14$	$1.3279(16)$	$\mathrm{N} 3-\mathrm{C} 17$	$1.5004(18)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.4747(18)$	$\mathrm{N} 3-\mathrm{C} 16$	$1.4834(17)$
N2-C14	$1.3342(18)$	$\mathrm{N} 3-\mathrm{C} 21$	$1.4974(19)$
N2-C6	$1.3973(16)$		
C1-N1-C7	$125.86(11)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	$106.61(10)$
C1-N1-C14	$108.36(11)$	$\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 1$	$106.42(11)$
C7-N1-C14	$125.76(11)$	$\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 5$	$131.60(11)$
C6-N2-C14	$108.17(10)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$112.37(11)$
C6-N2-C15	$126.09(11)$	$\mathrm{N} 1-\mathrm{C} 14-\mathrm{N} 2$	$110.43(11)$
C14-N2-C15	$125.74(11)$	$\mathrm{N} 2-\mathrm{C} 15-\mathrm{C} 16$	$109.17(10)$
C16-N3-C21	$109.32(11)$	$\mathrm{N} 3-\mathrm{C} 16-\mathrm{C} 15$	$112.05(11)$
C17-N3-C21	$111.10(11)$	$\mathrm{N} 3-\mathrm{C} 17-\mathrm{C} 18$	$110.35(13)$
C16-N3-C17	$112.11(11)$	$\mathrm{N} 3-\mathrm{C} 21-\mathrm{C} 20$	$110.29(13)$
N1-C1-C2	$131.10(12)$		

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{Cl} 2$	$0.92(2)$	$2.10(2)$	$3.0066(13)$	$171(2)$
$\mathrm{O} 1-\mathrm{H} 22 \cdots \mathrm{Cl} 1^{\mathrm{i}}$	$0.84(2)$	$2.35(2)$	$3.1919(12)$	$176(2)$
$\mathrm{O} 1-\mathrm{H} 23 \cdots \mathrm{Cl} 1^{\text {ii }}$	$0.85(2)$	$2.33(2)$	$3.1722(12)$	$175(2)$
$\mathrm{C} 2-\mathrm{H} 2 \cdots \mathrm{Cl} 2{ }^{\text {iii }}$	0.93	2.81	$3.6549(14)$	152
$\mathrm{C} 7-\mathrm{H} 7 A \cdots \mathrm{Cl} 1$	0.97	2.80	$3.6930(15)$	153
$\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{Cl} 2^{\text {iii }}$	0.93	2.75	$3.6243(15)$	158
$\mathrm{C} 15-\mathrm{H} 15 A \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.97	2.57	$3.2734(18)$	129
$\mathrm{C} 15-\mathrm{H} 15 B \cdots \mathrm{Cl} 2$	0.97	2.79	$3.5749(15)$	139
Symmetry codes: (i)	$x, y-1, z ;$ (ii)	$-x+1,-y+1,-z+1 ;$ (iii)	$-x+\frac{3}{2},+y+\frac{1}{2}$,	
$-z+\frac{3}{2}$.				

organic papers

All H atoms were found in difference Fourier maps. The water molecule H atoms and the N -bound H atom were refined isotropically. The other H atoms were refined with a riding model, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$, and with $U_{\text {iso }}$ constrained to be $1.2 U_{\text {eq }}$ of the carrier atom.

Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe \& Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the diffractometer (purchased under grant F. 279 of the University Research Fund). HK and ÜY thank Ínönü University Scientific Research Unit (BAPB-2005/36 project) for financial support for this study.

References

Akkurt, M., Öztürk, S., Şireci, N., Küçükbay, H. \& Büyükgüngör, O. (2004). Acta Cryst. E60, o1185-o1187.
Akkurt, M., Türktekin, S., Küçükbay, H., Yılmaz, Ü. \& Büyükgüngör, O. (2004). Acta Cryst. E60, o2135-o2137.

Akkurt, M., Yildirim, S. O., Küçükbay, H., Yılmaz, Ü. \& Büyükgüngör, O. (2005). Acta Cryst. E61, o301-o303.

Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Küçükbay, H., Durmaz, R., Orhan, E. \& Günal, S. (2003). Il Farmaco, 58, 431437.

Küçükbay, H., Durmaz, R., Okuyucu, N., Günal, S. \& Kazaz, C. (2004). Arzneim. Forsch. (Drug Res.), 54, 64-68.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2002). X - A REA (Version 1.18) and X-RED32 (Version 1.04). Stoe \& Cie, Darmstadt, Germany
Türktekin, S., Akkurt, M., Şireci, N., Küçükbay, H., Büyükgüngör, O. (2004). Acta Cryst. E60, o817-o819.

